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ABSTRACT

This report presents a new concept for the differential

correction of orbits. It is developed in detail for near-

stationary artificial satellites. For these satellites a few

(<10) observations over a short (5_15m, ~l% period) time

interval allows the reacquisition of the satellite an hour

later. Moreover, with only slightly more data points (total

• number <15) over a slightly longer (total duration <O~5) time

interval it is capable of producing an excellent set of

orbital elements. The technique is self—starting and does not

use any of the classical initial orbit determination procedures.

It can be used by a radar or extended to include angular velocity

data. Its success appears to be based on the ability to find

a coordinate system in which the object’s motion is nearly

• stationary and the extensive use of analytical (instead of

numerical) procedures. Extensions of the theory to include all

first-order perturbations and to all orbital types are possible.
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I. INTRODUCTION

Professor Paul Herget, former director of the Minor

Planet Center at the University of Cincinnati, has written’,

“It would be a constructive achievement to dispel the myth

that ‘a preliminary orbit can be computed from three observations’.”

He was referring to the wide-spread belief that good orbital

elements can be computed from a minimum of data. While we

agree with his statement, we will present in this report a

differential correction procedure, for a particular class of

objects, which accurately works when the observation interval

• is 1% of the period of revolution. The ability to do this is

of importance for passive and active artificial satellites,

for solar system objects (meteors, comets, and asteroids),

• and for binary star systems. Moreover, our technique is

capable of including all first-order perturbations. It may

be possible to extend the concept to all types of orbits,

not just near-stationary artificial satellites (the class

dealt with here).

How can we do this? We exploit the fact that for any

orbital motion there exists a unique coordinate system in

• which the heretofore moving object is stationary. Consider,

for example, an asteroid being observed from the earth.

It’s apparent motion is complicated by the earth’s annual

parallax, the observer’s diurnal parallax, the earth’s and
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the observer’s motion, the minor planet’s motion, and the

fact that the force ’s center is the Sun . To eliminate these

effects we first transform to a heliocentric coordinate

system, rotate into the asteroid ’s invariable plane, align

with the line of apsides, then rotate the coordinate system

with the asteroid ’s instantaneous angular velocity , and lastly
I

• use the asteroid ’s instantaneous heliocentric distance as

the unit of distance . This coordinate system rotates and

pulsates with a period equal to the asteroid ’s orbital

period but the asteriod is fixed . Clearly to perform the

coordinate transformation, one needs to know the orbit , the

earth ’s orbit , and the observer ’s location on the earth .

However, if one had an approximate set of orbital elements

for the asteroid, one could construct a coordinate system in

which the asteroid was nearly stationary. If , in addition ,

one were at the origin of this coordinate system, then the

description of the departures from stationarity would not

only be small but would also be easily modeled .

We are at the origin of any topocentric coordinate

system. There also happens to be a populous , growing in

• number and importance , frequently maneuvered class of satellites

which are naturally nearly stationary for all earth-bound

observers. The geocentric orbits of these satellites are

also simple: low inclination, small eccentricity, and mean

2
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motion t (~ 1.0027379093 rev/day). There are no meaningful

perturbations acting on them over a time span of a period

( = 1 sidereal day) and the analysis will be the simplest,

analytically, for this orbital type. There are also many

practical problems having to do with searching for such

satellites by optical means2 which require essentially

• instantaneous orbital element set construction. Moreover,

there are two natural topocentric coordinate systems in

which the analysis can be performed and all “small” quantities

of the theory have comparable magnitudes. For all of these

reasons the exploration of this new concept of differential

correction is most efficiently performed for this type of

orbit.

We do wish to stress two points: The development

presented here is truly a differential correction procedure.

It is not an initial orbit procedure nor a dead reckoning

technique. The other point is that the optimization problem

we have posed (and solved) is not the one that one really

wants to solve. The correct optimization problem is the

following: Let us define a function f [a (t )  ,t] which predicts,

at time t, the location and velocity of a celestial object

from the parameters a. Let S(t,T) be the propagator for f

so

f[a(T),TJ = S(t,T)f[a(t),t], S(t ,t) = 1.

_ _  • - • • - •-~~--~~~~~
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Suppose we also have knowledge, at epoch t, K (t), about the

celestial object. If a’ (t) is an approximation for a(t)

then we want to minimize, with respect to a’ (t), at some

specific time T,

) f [a (T ) ,T ]  — S(t ,T)f [a ’ (t) ,t ] I

subject to our knowledge K(t). It is not clear that the

differential correction of orbits is an equivalent formu-

lation of this problem*. It’s also not clear how to formulate
• this problem mathematically.

Let us now turn to some other aspects of the near—

stationary artificial satellite problem and its third—order

solution for angles-only data in the topocentric equatorial
4

• coordinate system (III). We also include the distance and
• radial velocity results, to second-order, in any topocentric

• spherical coordinate system. The Appendix discusses the

angles-only problem, to second-order , in the topocentric

horizon coordinate system. Section III discusses the results

of observational tests conducted at the Experimental Test

Site of the Ground—based Electro-Optical Deep Space Surveillance

• j program. This network of five, computer—controlled, observatories

is replacing the Baker-Nunn photographic camera system. We

*That is, a(t) = orbital element set at epoch t, f = ( 
~ 

1
and S(t,T) incorporates the physics of the problem. \ - 1

4
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also include some numerical tests to ascertain the long time

(
~ one period) usefulness of the present development. The

4
last section indicates the directions one could take for

other types of orbits. This is, generally, only a first-

order development.

I
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II. NEAR-STATIONARY ARTIFICIAL SATELLITES

A satellite, whose motion will be modeled by our

theory for a maximum time duration Tmax > 0, is defined

to be a near—stationary satellite if

i < 0.15, e < 0.15, m I t — h  < 0.15, and In — r i T max < 0.15. (1)

The satellite’s inclination is i, its mean motion is n, and

its eccentricity is e. The numerical factor of 0.15 is a

stationary satellite’s equatorial horizontal parallax, ire.

This quantity is beyond our control and has been taken to be

the upper limit for a small quantity. The theory developed

below is complete through all third-order terms of this

magnitude. We shall find, as with many other orbital analysis

techniques, that the mean motion is a difficult quantity to

accurately compute. However, we shall also find that as n ÷ t
the practical limits on i and e rise to “ 25° and ‘t. 0.25

respectively. Moreover, the size of the parallax implies

that the data need not even be reduced before the numerical

computations are performed*.

*We are not advocating incorrect, incomplete, or sloppy data
reduction. We merely point out that the largest correctio~,the astronomical refraction correction, is numerically ‘s-. ~at a zenith distance of 60°. Similarly perturbations due
the earth’s oblateness 9r luni-solar forces are inc~nsequential
at this ]evel(e.g., J2,r9 is numerically less than we).

6
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Using standard notation to describe the Iceplerian orbit

= argument of perigee, ~ = longitude of the ascending node,

v = true anomaly, r = geocentric distance) our starting point

is

h = - - tan~~ (cositanu),

iS = sin~~ (sinisinu), (2b)

r = a(l — e2)/(l + ecosv), (2c)

(2d)

Here h(R) is the geocentric (topocentric) hour angle, 6(a) is

the geocentric (topocentric) declination, r(R) is the geocentric

(topocentric) distance, and t is the mean sidereal time on the

observer ’s celestial meridian. Once the appropriate approximate

expressions have been developed for the geocentric variables,

• we transform to the topocentric coordinate system via

tan (H - h) = psinh/ (1 - pcosh), (3a)

• tan(6 — ~) 
= qsin(y — iS)/[l — qcos(y — 6)], (3b)
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• R = rsin(6 — y)csc(~ — y ) ,  (3c)

p = (p/r)cos~ ’sec6, (3d)

q = (p/r)sin4 ’cscy , (3e)

• 
• tany = tan+ ’cosl (H — h)/2]secfh — (H — h )/2 ] , (3f)

• where p is the observer’s geocentric distance and +‘ is the

I observer’s geocentric latitude.

When developing the formulas we find that the Keplerian

orbital element set is not a convenient framework to use.

Instead, we shall use

N = n - ~~ (4a)

• A = t - ~~ T - ( M 0 +~~~~+ I2) , (4b)

Ec = ecosM0, E5 = esinM0, (4c)

= icos(w + M0), I~ = isin(c + M0), (4d)

where M0 is the value of the mean anomaly at the epoch to and

T = t - to. We shall further abbreviate some frequently

j_ 8 
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occurring combinations of the parameters by

in = tT, (5a)

E = esin(m + M0), E’ = E/t = ecos(m + M0), (5b)

I = isin(w + in + M0), I’ = h/t = icos(w + m + M0). (5c)

• Note dA/dt 0 so that the new parameters are constants.

The procedure is straightforward : We express the true

anomaly as a power series in e and NT, substitute into Eqs. (2),

replace trigonometric functions of i by their Maclaurin

series, and then expand everything else about e = 0 , i = 0 ,

• and N = 0. The result is

h = A - (NT + 2E) - 2NTE’ - 5EE’/2 + II’/2 - 5NT (E ’2 - E2 )/2

+ (NT + 2E)(I’2 — 12)/2 + EN
2

T
2 

+ l3E3/3 — 3E(E~ + E~~), (6a)

6 = I + I’(NT + 2E) — I (NT + 2E)2/2 + 2(NT + 2 E ) E ’I ’  — 3EE ’I ’/2

+ I~ /6 — I (I~ + I~~)/6 , ( 6b)

• 
n a 0 = [1 — 2 N/ ( 3 r ) ] ( l  — B ’ )  + (NT + E)E + 5N2/(9r2), (6c)

1
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r2a~ = GM~. (6d)

We now repeat the analysis by using Eqs. (6) in Eqs . (3)

and regarding p/a0 as a small parameter. The result is

(H-h)sec~ ’/(p/a0) = Li + 2N/(3r) + E ’ - (NT + 2E)2/2

+ 2NE’/(3r) — NTE + E’ 2 — B2 — N3’(9;2) + 12/2]sinA

- { (NT + 2E) + 2NTE ’ + 5EE’/2 - II’/2 + (NT + 2E)(2N/(3r)

+ E’]}cosA + (p/a0) 11/2 + 2N/(3r) + E’]cos4i’sin2A

• — (p/a0) (NT + 2E)cos$’cos2A + (p/a0)
2cos2~ ’sin3A/3, (7a)

(A — iS)/(p/a0) = — (1 + 2N/(3i) + B’ + 2NE’/(3r) — NTE + B ’ 2

— E2 — N~’(9t
2) — 12/2]sin$’ + {I[l + 2N/(3r) + B ’)

+ I ’ ( NT  + 2E)}cos~ ’cosA — I(NT + 2E)cos$’sinA

— (p/a ){l + 2[2N/(3r) + E’]}cos$’sin$’cosA
0

i I + (p/a0) (1/2) (2cos
2A — sjn2A)cog2$’ + (p/a0) ((NT

+ 2E)cos$’sinA — Isin$’]sin$’ + (p/a0)
2[sin2$’/3

+ cos24i’(sin2A — 2cos2A)/2]sin~ ’, (7b)

.1
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R/a0 = 1 — [2N/(3t) + B’] — (p/a0)cos~’cosA + 2NE’/(3;)

+ NTE + E2 
+ 5N2/(3r)2 + (p/a0)I(NT + 2E)cos~ ’sinA— Isin+’]

+ ((p/a0)
2/2](sin2$’ + cos2~ ’sin2A ), (8a)

R/a0 = (N + T ) E  + (NT + 2B)rE’ + (p/a0)[(N + 2TE’)cos+’sinA

• — rI’sin~ ’] — 2NE/3 . (Sb)

We can now formulate our optimization problem. Suppose

we have W observations of topocentric hour angle and declination

{Hn~
Vn~

tn}s n = 1,2,. . .,N. We define*

N
• S = ) f (H ~ — H~ ) 2 

+ 
~ n 

— A ) 2],
n= 1

and demand that S be a minimum with respect to NiA iEciEscIc~ 
and

~~ Hn and An are expressions (7a , 7b) evaluated at time

Tn = t~ — <t>~ <t> = ~~t~/N t0. (10)

The problem formulated is a non-linear least squares problem

which takes cognizance of the fact that there are only six

*The factor of cos2A multiplying (H - H ) 2 is effectively
always unity for nea~-stationary sat~llitgs.

11



independent parameters. Because of the lack of a theoretical

basis for solving such problems, we make no pretense concerning

the properties of the values of the estimates obtained for the

six parameters. Moreover, we continue our analytical bent and

use the method of steepest descent3 to solve the minimization

problem. This is theoretically more powerful than the usual

iterative linearization technique normally employed to solve
.

5

non—linear least squares estimation problems. It also

converges more quickly and is second-order. It only remains

to supply initial guesses for the six parameters. Satisfactory

ones are

N
A = 

~ 
H~ /M, all others = 0. (11)

n=l

Note in particular that setting B
~
, E5, I~ , and I~ equal to

zero does not prejudice the values for w, ~, and M0. This

is important since there is little forcing changes in these

angles in the gradient or Hessian matrix of S.

Now let us see what we can anticipate for the numerical

results. Since the first—order terms will carry most of the

• weight, we shall concentrate on them. From Eqs. (6b and 7b)

both the inclination and w + M0 can be well determined. From
• Eqs. (6a and 7a) we see that w + (2 + M0 will be well determined

• but that an eccentricity/mean motion swap is possible. This

12
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follows because as T ÷ 0 the coefficient of T in h is
- (N + 2recosM0) and there will be no way to distinguish

which part of this quantity is being contributed by N ~ 0

and which part is being contributed by e ~ 0*. This

difficulty (especially for N) can be partially ameliorated

if the units of N are rev/day instead of rad/day**. When

+ • computations are done using the same data with N in the different

units there can be a noticeable difference between the results.

*When T + 0 the constant part of h ÷ A - 2esinM0 but A is ofthe zero’th order while e is of the first—order. Hence, the
numerical separation problem is not as severe.

**The difference of 2iu accentuates small changes in N.

p

13
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III. TESTS OF THE THEORY

+ 
A. Short Time Observational Tests

It was originally thought that this development would remove

the necessity for a traditional differential correction procedure.

• Such procedures frequently have artificial singularities for e = o

or i = o. Hence, the tests described in §IIIB were performed

first. When faced with the reality of a full search2 —— time—

sharing a telescope between a dozen unknown satellites and attempt-

ing to initialize data acquisition on four unknown satellites

simultaneously-—it was pressed into use. Much to our surprise

it worked extremely well. In Table 1 is summarized, 1) the

total time duration of the first three observation sequences,

2) the number of observations performed in each of these observ—

ing sessions, 3) the time interval between the successive observ—

• ing intervals, and 4) the ratio of the time difference between

the start of the last and first observing intervals to the sum of

the first and second observing durations. The last quantity is a

• crude measure of the “gain” (e.g., lever arm) of the technique.

Quite clearly a lever arm of 10 can be achieved. In the interven-

ing time other tasks can be performed by the telescope. No

satellites were lost due to the use of the technique. In addition,

the actual orbital element sets converged quickly towards the true

• values (within the limitations discussed above and in the next

subsection) .

14
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TABLE 1

Satellite Observing Number of Successive Ratio
Number Time Observations Observing Time

__________ 
Duration 

____________ 

Interval 
_______

1 13’?3 8
2 .7  3 126 9 10.8
2.2 3

2 5 9  6
3 4  3 31.7 7 7
2.0 3

3 4.1 5 221.9 8 72.6 3

7.4 5 2460.8 2 3 9 6  7.2
17.6 4

5 4.0 5
1.2 2 8.7
0.9 2

6 7.1 5 163 02.0 2 • 25.6
1.4 3 72.4

7 4.3 6 180• 1.3 3361.7 3

8 5.3 6 1 2 71.8 3 9 1  3.3
1.9 3

2.0 3 3 9 5  10.8
2.2 3 •

10 4.7 .5
8.3 3 54.7 10.4
8.3 3 78.8

15



_______________________________ - —

B. Long Time Numerical Tests

To ascertain the limits of the theory a series of long

+ t ime numerical tests were run on eleven different satellites.

For each satellite one positional measurement per half—hour

p was supplied for an entire night. The data had a numerical
5accuracy of “ ~~ The appropriate fits were made and the

• theory used to predict the position at the beginning of the

next evening (Tmax 0’?8). This was compared against the

actual position at the time. The results are in Table 2 for

• the a) second-order theory with N in rad/day, b) the third-

order theory with N in rad/day, and C) the third-order

theory with N in rev/day. Also we have listed the Space

Defense Center satellite identification number, the satellites ’

inclinations, eccentricities, and N values . We have also

• performed similar numerical experiments wherein the orbital

element set and the usual equations of Keplerian motion were

used to predict the position. These results do not significantly

• differ from those obtained with the use of the appropriate

order theory series expansion.

In general, the second-order theory yields the same

results as the third-order theory. The largest difference

is for the International Ultraviolet Explorer satellite

(*10637), which clearly shows both the importance of the

higher order terms (in this instance) and that the limits

16
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for i and e in Eq. (1) can be considerably extended as N + 0.

It is also clear that as N departs from zero the accuracy

very rapidly degrades. In fact, almost all of the error is

in the hour angle (remember that the declination coordinate

• has no first—order secular term, cf . Eq. (6b)].

In order to understand the relationship between the two

different third—order results, remember that if N is in

rev/day we have a multiplier of 2ir exaggerating N ~ 0 values.

When N is large this is good (Cf . satellites #4632, #83546,

#3623). When N is small but i and e large, this is bad (cf.

satellites #73505 and #10637). We conclude that a more

p traditional differential correction procedure would be much

more profitably used than the one presented here over these

• time spans. Of course, the initial orbital element set for

the traditional procedure would be one obtained from our

method.

18
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IV. EXTENSIONS

A. Why Does It Work?

To try and answer this question, whose import should be

obvious, let us compare a traditional differential correction

procedure with the one presented here. Because no one would

propose developing a sophisticated, complex algorithm (not

to mention the successful coding of it for an electronic

digital computer) for use over such short arcs, it would be

designed for longer arcs. As the length of the arc increases,

the significance of the perturbing effects of the non-

sphericity of the earth, the presence of the sun and the

moon, of air drag, of solar radiation pressure, etc., all

increase. Hence, the physics of a traditional differential

correction procedure is much more accurate and complex then

we’ve used. To make this investment profitable, one needs

accurate, precisely reduced data. In contradistinction, we

should be able to produce the same results with simplified

physics and with poor quality, unreduced data. One also

formulates the physics in an inertial reference frame (almost) •

rather than a non-inertial reference frame. Therefore, the

coordinate transformation we have handled explicitly and

analytically, is handled implicitly and numerically. This

complexity forces, as a practical matter, the search for the

orbital elements (or geocentric initial conditions) to be an

19
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iterative linear one with the attendant numerical computation

• of the various partial derivatives one needs. We use a

second-order technique and proceed exactly (within the

constraints of the order of the theory) because we do it

analytically. Another consequence of using a more correct

physical model of the situation is the desire to simplify

the computations as much as possible. This leads to the use

of various analytical devices (e.g., averaging in first or

second order). This frequently leads to artificial analytical

singularities, typically at zero inclination, zero eccen-

tricity, or the critical inclinations (5cos2i = 1). Since

our model is pure Keplerian motion, there are no artificial

singularities due to the use of analytical devices (and

certainly not for e = 0, i = o or at the critical inclina—

tionsi). Moreover, one does not expend the effort necessary

to design a sophisticated , complex differential correction

procedure for one type of orbit. This generality of the

traditional methods coupled with the vicissitudes of orbital

analysis mean that the art of orbital analysis is frequently

as important as the science of orbital analysis for them to

work successfully. In our situation human intervention is

almost superfluous*. Finally, our analysis is performed in a

4 ~~~~~ iterative fitting for the mean motion may help us when n
significantly departs from t. Solving the problem using
both the rad/day and rev/day and then performing a new solution
is the maximum art we can envision in our process.

20
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coordinate system that makes the motion nearly stationary.

This is not a feature of traditional procedures. These

• points have been summarized in Table 3.

- It would appear, over the arcs with which we are

concerned here, that only the first four lines of the Table

-: are in our favor. Of these , it is probably the near—stationary

aspect of the motion that is of pre-eminent significance.
-

• By accident (for the purpose of this discussion, not for the

• practical uses of near-stationary artificial satellites)

there is a natural, topocentric coordinate system in which

some real artificial satellites’ motion is nearly stationary.

If it is the near—stationarity that really counts, and one

can use a minimal amount of data on any orbital type to

determine the orbital plane3, then a major change in the

short—time differential correction of orbits is at hand .

B. A Non-Near-Stationary Orbit

As we look back at the formulas presented earlier, we

see that explicit use of n = ‘r has been made of twice. Once

+ was in computing the satellite’s parallax. The other was

• in the constancy of A. If we consider any low inclination,

small eccentricity orbit, with mean motion n0, the near-

+ 
stationary constraints (1) would be modified to

~~ ~~~~‘ 
e<1r~,, In/n0 - 11 

~ ~~~~
‘ and In - nolTmax ~ ~o’ 

(12)
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TABLE 3

COMPARISON OF TRADITIONAL AND PRESENT DIFFERENTIAL
CORRECTION PROCEDURES

Traditional DC NSDC
5,

Not near—Stationary Near—stationary

r Implicit Geometry, numerical Explicit Geometry , analytical

Numerical computation of par- Analytical computation of partial

tial derivatives derivatives

First—order, linear, solution Second—order, non—linear, solution

technique technique

For all types of orbits For one type of orbit

Complex, accurate physics Simple, approximate physics

Can involve considerable art No art

Accurate data Unreduced data

Artificial singularities No singularities

1 1  
S •
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where is the (mean) equatorial horizontal parallax of a

satellite with mean motion n0{110 = sin~~ LR,(n~/GM,)
1”3J}.

fr~ 
Then if we redefine

N = n — n 0, (13a)

• A = t - n 0T - ( M0 + w + ~~2), (l3b)

• m = n0T, (13c)

= E/n0, (l3d)

I’ = I/n0, (l3e)

all of the analysis of §11 and the Appendix will remain valid.

The theory is still of order ir~ but our earlier comments con-

cerning poor data or data reduction or perturbations may need

modification depending on the value of n0. Roughly, J2 will
2 3become important when 

~2~o ~ 
lunar perturbations will

• become important when M~1f~/(M~11g) ~v 1, and solar perturbations
will become important when M1ir~ / (M ir~ ) “.‘ 1. This extension is

• I 
not only trivial, it’s not very important.

Consider, instead the general problem of making any

artificial satellite nearly stationary. The heliocentric

23
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parallax of the earth complicates all other astronomical

problems and doesn’t add anything. As the problem appears

intractable anyhow we’ll ignore it for now. We must, at

least, have estimates for i, ~, n , and e. It seems clear

that the true longitude Lu = v + w, ci. Eq. (2d)] is the

variable to use. From

cosu = cos6cos(ct - c~), (l4a)

• sinu = cosôcosisin(ct — ~l) + sinisin6, (14b)

We can write

u(i,~Z,cL,ó) = ufi ,~~,a(r,A ,~ ),6(r,A ,~ )]

= u{i,~ ,afr(n,e),A,~ ],6Lr(n ,e),A,A]}. (15)

Let i0, %, n0, and e0 be our initial values foz~ i, £~, n,

and e. Then to first order in ~i = i - i4~, etc.

u u0 + 
~~~ 1 0 t uj  + 

~~~~ 
+ (
~ ~ 

+

~~~ 

}
~) ~ I0

+(
~~~~~~

+
~~~~~~

) ~~~ 
(16)

Here u0 is not really u(i0, ~~ n0, e0) since the dependence

of the true anomaly on the mean motion and the eccentricity has

24
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not been taken into account. Thus, with v0 = v(n0, e0),

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +(
~~~~~~ ~~~~~~~

+ [~x +  ~~~~~~~~~~~~~~~~~~~~~~ (17)

Before, in §11, the three angles of the problem, w, (
~, and

[= the mean anomaly at the epoch time, not our initial guess for

M(T)J, naturally appeared in analytically convenient forms. While

-
• w and ~ (by default) still do, H0 does not*. Our numerical

• experience with the near—stationary satellite problem augers

very poorly for the determination of H0. Hence, either the

formulation presented here needs modification or a more clever

choice of variables is required.

~ *That is, we’ve actually written out Eq. (17) using the general
first—order expressions

= ( —2 (1 - ecosE)/(3n) + eTsinv/(l — e2)1”2]An

—cosv~e + Ot~i + OM~ + Ot~w+ Lesinv/(l — e2)1”21~ M0,

• cos60M = [T(l — e2)1”2sinicosu/(1 — ecosE)2]~ n

+ [sjnicosusinv(2 + ecosv)/(l — e2)]Ae + cosisinuti

I • + O~~~ + sinicosuAw + 1(1 — e2)1”2sinicosu/(1 - ecosE)2]AM0,
cos2ó Aa = IT(l — e2 )~~”2cosi/(l — ecosE)2]An

I + [cosisinv(2 + ecosv)/(l - e )]Ae — sinisinucosuAi

• + cos2ó M~ + cosittw + L (l — e
2)~~

12cosi/(l — ecosE)2]~ M ,0 
. 

0

I
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I
One might inquire as to the advisability of again

dealing directly with topocentric coordinates. Since the

topocentric coordinate system is not now the unique one

referred to in the Introduction, such an analysis would

not likely be of much benefit.
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APPENDIX: The Horizon System

Since the satellite is nearly stationary, and the topocentric

horizon system is centered on the observer, this appears to be an

excellent coordinate system in which to work. The azimuth parallax

correction is also extremely simple. The drawback, in our view,
~
.

is the requirement of undoing the direction cosines.

• In addition to geocentric hour angle and declination (h,6)

we need geocentric zenith distance, z, and azimuth A. A is

measured from the south positive westward. Finally, if $ is
• 

• the observer’s astronomical latitude,

sinzsin A = cosi5sinh, (Ala)
+ sinzcosA = sin+cos6cosh - cos+sin6, (Alb)

cosz = cos$cosócosh + sin~sin6. (Alc)

From Eqs. (2)

sinzsinA = cosusin(t — ~) — cosisinucos(t — ~), (A2a)

• sinzcosA = sin~ Lcosucos(r — C~) + cosisinusin(r —

—cos$sinisinu, (A2b)

cosz = cos~ Icosucos(t - ~Z) + cosisinusin(t - (2)]

• + sin$sinisinu. (A2c)

• We proceed as outlined in *11 and find

~~~ 27
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sinzs jnA = sinA — (NT + 2E)cos — (N2T2/2)sinA

— 2NT (EsinA + E’cosA) — 2E2sinA — (5EE’/2)cosA

+ L (I~ + I~)~
”2I/2]cos(r — (2), (A3a)

sinzcosA = sin~ [cosA + (NT + 2E)sinA] — Icos$ — (N2T2/2)sin$cosA

+ 2NTsin+(E ’sinA — EcosA) — INTcos$ — 2EI’cos$
— sin+{2E2cosX — (SEE ’/2)sinA + LI(I~
+ 12)1”2]sin(t — £2)} , (A3b)

cosz = cos$[cosA + (NT + 2E)sinx] + Isin$ — (N2T2/2)cos~cosA

+ 2NTcos~ (E’ginA — EcosA) + I ’NTsin$ + 2IEsin~
—cos${2E2cosA — (5EE’/2)sinA + [I(I ~ + I~)~

’2/2Jsin(r—~2)} . (A3c)

If Z, A are topocentric zenith distance and azimuth, then

tan(A - A) = PsinA/(l — PcosA), (A4a)

tan(Z — z) = Qsin(z — F)/[l — Qcos(z — F)], (A4b)

P = (p/r)sin(~ — $‘)cscz, (A4c)

Q = (p/r)cos($ —

~
- • 1 

tanr = tan($ — $‘)cos[(A + A)/2]sec[(A — A)/2], (A4d)

I
• i 

But 

— = ~sin2~ ’ + (ti2/2)sin4$’ + . . . (A5a)

where

(A5b)

28
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I.
and f is the flattening of the earth, 1/297.25. Therefore,

through second—order in

(A6a)

2 = z + (p/a0) sinz[l + 2N/(3r) + E + (p/a0)cosz]. (A6b)

Hence,

sinZsinA El — (p/a0)
2sin2Z]sinzsinA +

(p/a0)sinzsinl~.coszIl + 2N/(3t) + E + (p/a0)cosZ), (A7a)

sinZcosA [1 — (p/a0)
2sin2Z]sinzcosA +

(p/a0)sinzcosAcosz[l + 2N/(3t) + E + (p/a0)cosZ], (A7b)

I cosZ — cosz — (p/a0)sin
2z [1 + 2N/(3r) + E + 2(p/a0)cosZ].(A7c)

Not only must the direction cosines be eliminated to obtain explicit

expressions for 2 and A , but the problem is implicit. Hence,

we have opted for the (relative) simplicity of the equatorial

coordinate system.
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